【导语】数学方法心得体会怎么写好?本文精选了4篇优秀的方法数学心得体会范文,都是标准的书写参考模板。以下是小编为大家收集的数学方法心得体会,仅供参考,希望您能喜欢。
- 目录
【第1篇】高中数学学习方法心得体会
经过这么多天的学习,对新课程有了更深层次的理解,从理论上得到了充实和提升,开拓了我们的视野。作为高一数学教师,新课程的实施对我们来说更有着非同一般的意义。因此在培训之后我们进行了仔细的讨论,下面是我的一些心得和体会。
一、数学课改的背景:
高中是人生发展的重要阶段,时代的发展对人才培养的规格和目标提了更高的要求。因此,高中课程应能更好地适应时代发展、人的发展和社会的发展。而教材则是数学课程实施的重要组成部分。选择和使用合适的教材是完成教学内容和实现教学目标的重要前提。高水平、高质量的教材对教师、学生、教学过程以及教学结果都起着积极的作用。
二、数学课程“内容标准”解读:
高中数学课分必修和选修。必修课程有5个模块组成;
数学1:集合;函数概念与基本初等函数i
数学2:立体几何初步;平面解析几何初步
数学3:算法初步;统计;概率
数学4:基本初等函数ii;平面上的向量;三角恒等变换
数学5:解三角形;数列;不等式
选修课程有4个系列。必修课程内容确定的原则是:满足未来公民的基本数学要求,为学生进一步的学习提供必要的数学准备。选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。基于这种教学内容安排,应该说高一教学任务最为繁重,要学完四本书,难点集中,周期太长;若高一未打好基础,等到高三复习时恶补是无济于事的。所以如何处理好高一学年的教学,在整个高中阶段显得尤为重要。
三、对教学的思考:
1、更新观念,转变角色。
数学属于全体大众,教师和学生是平等的。因此,教师要由课程知识的施与者变为教育学意义上的交往者。教师要改变使原来内涵丰厚、品位高雅的课程异化为以复制系统知识为目的的大工业生产式的流水作业的做法,不能再以课程知识的拥有者和权威自居。应将“教程”转变为“学程”,将“知识施与”转变为“教育交往”。教师作为全人格和全心灵的交往者,既不视学生为承纳知识的容器,也不被学生视作获取知识的对象和手段,应具有民主理念与生本理念。教师要从“一切为了学生的终身发展”出发,在课程的每个环节中都体现出以生为本、“全人”发展的课程理念。
2、不断实践,转变教学行为。
在实际教学过程中,由于受到传统教学思想以及考试压力的影响,我们在贯彻新课程上面可能或多或少打些折扣,这是我们需要警惕的,只有不断实践,努力将新课程理念运用到实践中,才能不断地提高学生各方面的能力。首先在课堂上,教师的教学应创造一个合适的学习环境,使学生能够主动地建构他们的知识,促使学生在学习过程中,实现新旧知识的有机结合。在整个教学过程和学习过程中,教师是组织者、指导者、促进者。如:创设生活情景,激发学生学习数学的热情。当数学和学生的现实生活密切结合时,数学才是活的、富有生命力的,才能激发学生学习和解决数学问题的兴趣。同时,在现实问题的解决中表现数学概念,掌握数学方法,形成数学思想,更能促进在以后遇到相关问题时自觉地动用有关数学经验去思想、去解决问题。还有如:多做数学实验,让学生在动手实践中学习。以往的数学课堂教学过于强调接受学习,死记硬背,机械训练,而很少让学生动手,实践。实践证明,若要让学生积极参与,勤于实践,数学上的很多问题还是能够得到很好解决的。特别是在应用题的教学中尤为显得重要,学生普遍反映:听来的容易忘,看到的记不住,只有亲自动手才能学得会。
3、注重形成过程,突出激励机制。
新课程强调过程,强调学生探索新知的经历和获得新知体验。
对于教师而言,课堂教学就应该充分地考虑和体现数学知识的形成过程,把开展探究性学习和研究作为贯穿于课堂教学始终的一条线。同时要不断的鼓励学生、激励学生,使学生增强学习数学的信心。教师要从学生的全面发展和终身发展着眼,使评价不仅要关注学生的学业成绩,而且要发现发展学生的潜能,要将评价重点由终结性转向过程性与形成性,引导学生不仅求“知”,更要求“德”,不但“学好”,更要“好学”,帮助学生认识自我,建立自信,教师要以自己其独具的眼力和襟怀来悦纳学习个体之间的多样性与差异性,要以心灵拥抱心灵,以激情点燃激情,放飞生命的灵思和才情。
四、存在的一些问题:
1、关于初高中教材内容的衔接问题。
现行初中教材中,对于一些常用的知识和方法有许多遗留的内容,如韦达定理、分母有理化、十字相乘法以及三角形四心问题等,而这些内容是我门在高中阶段必须用到的知识点。对于这些内容应如何处理?应该安排何时补充这些内容比较合适?是放在所有新课之前单独讲授还是在讲授有关内容时穿插进来?这些都是在新高一教学中不可避免会碰到的问题。
2、关于新教材该如何把握难度的问题。
新课标实施不久,对新教材的了解和把握还有所欠缺,课程内容要求高,难点集中,习题配置较少;信息技术要求太高,师生负担较重。加上对应的参考资料比较缺乏,现存的资料对教材难度的把握不甚明确,如新旧教材中对于函数定义域和值域这块内容的要求有较大的差别。因此在对教学和考试中的难度的确定的尺度不易把握。
3、关于课时安排较紧的问题。
新课程标准要求高一学生修完一、二、三、四册必修课程,实际需要的总课时必然超过可以给定的总课时,给总的教学任务的完成增加了很大的难度,希望各领导予以关注总而言之,通过本次课改培训,使我们认识到,我们的数学教学应依据课程标准的要求,以人的发展和社会进步为需求,使每个学生获得必要的数学基础知识和基本技能,提高空间想象、抽象概括、运算求解、推理论证、数据处理等基本能力。使学生具有一定的数学视野,逐步认识到数学的科学价值、应用价值和文化价值,形成批判性的思维习惯。学习方式的转变是本次课程改革的显著特征,改变原有的单纯接受方式的学习方式,建立和形成旨在充分调动、发挥学生主体性的探究式学习方式,自然成为教学改革的核心任务。专家认为,从教育心理学角度来讲,学生的学习方式有接受和发现两种:在接受学习中,学习内容是以定论的形式直接呈现出来的,学生是知识的接受者;在发现学习中,学习内容是以问题间接呈现出来的,学生是知识的发现者,两种学习方式都有其存在的价值,彼此是相辅相成的关系。转变学习方式就是把学习过程中的发现、探究等认识活动凸显出来,使学习过程更多地成为学习发现问题、提出问题、解决问题的过程。因此,强调发现学习、探究学习、研究学习,成为本次课改的亮点。从推进素质教育的角度来讲,转变学习方式,要以培养创新精神和实践能力为主要目的,换言之,要构建旨在培养创新精神和实践能力的学习方式和教学方式,要注意培养学生的科学思维品质,鼓励学生对书本的质疑和对教师的超越,赞赏富有个性化的理解和表达。要积极引导学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意识和习惯。
高中数学学习方法
【第2篇】数学老师教学方法心得
11月16日,我在镇明中心小学参加了听课活动。在活动中聆听了杭州倪玉瑶老师执教的《认识钟表》、镇明中心小学徐群老师执教的《倍的认识》和嘉兴的徐芳老师执教的《笔算乘法》,三位教师精彩的课堂教学让我收获颇多。
这三节课都在自然、亲切的教学氛围中进行,师生关系相当融洽;教学过程中充分了解学生的知识基础,找到探究学习的起点,激起学生探究新知的欲望;探究活动扎实而有效;教学活动一步一个脚印,扎扎实实,注重对学生解题策略的培养,注重培养学生用数学知识解决生活问题的能力。
一、 追求简洁扎实的课堂教学。
倪老师简洁扎实的课堂着实让人耳目一新。简单自然的课堂引入:知道老师是几点到校的吗?从而引入钟表的教学:认识钟面、闭上眼睛想一想、说一说,钟面的最左边是数字几,最右边是数字几,最上面呢,最下面呢?简简单单的教学活动,轻松地使学生加深了对钟表的认识。同时,倪老师充分利用学生已有的生活经验知识,直接出示小明一天的生活场景图,通过学生自主地认、读、写、播,从而达到了使学生认识整时的教学目标。
二、 教学,需要我们教师精心制造风浪。
徐群老师在教学《倍的认识》中,制造了两个风浪:
(1)、(课件出示5朵的一组红花),请学生说出:黄花是红花的_倍。倍是两个数量之间的倍数关系,但对于2年级的小朋友来说,理解是非常困难,通过徐老师设计的这一教学活动,使学生产生了思维碰撞:“没有黄花怎么比啊”,不需老师刻意再去解释,学生自然而然已经知道了两数之间才有倍数关系。
(2)、倍数关系中,标准数变了,倍数也就不一样了。为了使学生理解,徐老师制造了第二个风浪:将黑板上3个一组的三角形去掉一个,补上一个,让学生自己动手摆一摆、想一想、它们之间的倍数有变化吗?自主探索中,学生是真的懂了:标准(几个为一份)变了,倍数也变了。
值得商榷的地方:
1、 倪老师《 认识钟表》的拓展练习中,设计的钟面,上面没有数字也没有12大格的显示,但考虑到一年级学生刚刚接触钟面,为了让其更准确的认时,是否可以出示12大格。
2、 钟表的欣赏非常好,但能否与认识整时结合起来,将一幅定格来认识时间。
3、 徐芳老师的《笔算乘法》中,为加强双基,在新授后,能否再出几题模仿练习,强化技能的训练。
【第3篇】数学思想方法心得体会
随着素质教育的深入开展,数学思想方法作为数学素质教育的重要内容已引起教育界的普遍关注和高度重视。做为未来高中教师的初等教育系的学生肩负着基础教育的重任,所以更应具有创新意识和创新能力。那么,应当如何认识数学思想方法?数学思想方法与初等数学又有什么样的关系?在初等数学的教学中又如何体现和渗透数学思想方法?
一、注重引导,抓住学习关键
数学关键就在一个悟字,所谓悟,就是开窍,如何开窍,就要求讲师不要只讲题目的做法,而是包括,是怎么想到要这么做的,以引导学生去理解,去悟,对于初等数学,本人的看法是随便怎么做,因为初等数学的试题必然有解,必然是可以通过所给条件经过n多步骤推出来,不信可以试试,拿一道,先什么都不要管,只管把已知条件以全排列方式组合,以推出新的条件,再将所得条件组合,再推,直到最后推无可推,你会发现题目所求就在其中,甚至简单的可能是离最终结论还有n步,复杂的估计也就是最终结论了,所以以高考为目的的初等数学题目是不经做的,因为只要你做,就一定能做出来,而之所以很多学生觉得难,没处着笔,不知道改该怎么做,很大一部分是因为懒,不愿动笔,而只是呆看,简单的'能看出来,复杂的是很难看出来的,如果说那种直接推导的办法太耗时间,那么只能说是因为不熟练,一旦题目做多了,思维形成了,差不多就可以一眼看出来,顶多推两步,就知道后面的怎么推了,从而省略了n多的分支,古往今来的题海战术不是没有依据的,熟能生巧,见得多了,做的多了,自然可以找到某种规律
二、要正确处理本课程的自身逻辑系统与相关课程的关系
初数研究课在研究初等数学问题时,大多采用专题讨论的方法,都有一套完整的体系。如果过分强调自身完整的逻辑系统,容易导致不同学科、不同课程的内客及方法有很多重复和交叉。
如数与初等数论中的相关内容,解析式的恒等变形,方程、不等式的解法与证明,几何证题法与证题术排列、组合及数列的一些解题方法等。如果不处理好它们之间的关系,只是简单地追求各门课程自身体系的完整,既不利于学生整体数学思想的建立,又制约了他们数学综合运用能力的提高,同时占用了很多的课时,所以,对于相关课程中己作详尽讨论过的知识及理论,应作为工具来应用,避免一些不必要的重复。
三、变被动式学习为主动式学习
1.知识系统的探究
初数研究课涉及大量的理论,教师讲、学生听的传统教学模式既占用课时多,又难以体现学生的主体性。因此对理论性较强的内容,教师可以先提出一些切题的问题作为一堂课的锲子,留待后面逐个解决。这些问题将整个教学内容串起来,起到提纲挚领的作用,使学生明确学习目标,集中学习资源(如本课程及相关课程的教村及参考书)有针对性地去探究问题,然后教师组织学生对探究的结果进行归纳整理,形成较完整的知识体系。当然一个问题的解诀并非探究的终结,在探究过程中教师与学生都可以提出一些新问题,延续学生探究的热情,在合作交流的民主和谐的氛围里,尽可能地让学生走向自由探究。
2.解题方法的探究
从学生的认知角度未说,解题过程是独立的发现、探索与积极思考的过程,这种探索过程中所形成的意识和思维,就是真正的创造与发现。应该说,解题教学是中学数学教学的主要任务之一,设置初数研究课程的目的之一,就是结合中学实际对解题作专门的训练。
3.条件与结论的探究
对一个问题的条件或结论进行探究是对问题深入研究的重要组成部分,也是初数研究课程中具有挑战性的任务之一,引导学生从不同角度、不同层面来看问题,对学生的发散思维及创造思维的培养,都能起到良好的推动作用。
随着教学改革的深化,教学思想方法不仅要在理论上做研究探讨,更重要的是需要在实践中不断地创造与完善,才能使教学取得较好的效果。
【第4篇】读《数学思想方法与中学数学》心得体会
最近在研读《数学思想方法与中学数学》(钱佩玲编著)一书,编者对初中数学思想方法进行细致的讲解,感受颇深。
《义务教育数学新大纲指出:“初中数学的基础知识主要是代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。”把数学知识中的数学思想和方法纳入基础知识范畴,这充分体现了我国数学教育工作者对于数学课程发展的一个共识。这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然要求。因此,探讨数学思想方法教学的一系列问题,已成为数学现代教育研究中的一项重要课题。
反复的阅读再结合自己平时的教学工作,有一种慢慢觉醒的感觉,下面就谈谈其中的收获。
一、中学数学特有的一些基本的数学思想方法:
(1) 用字母代替数的思想方法
(2) 集合的思想方法
(3) 函数、映射、对应的思想方法
(4) 数形结合的思想方法
(5) 最优化的思想方法(极大、极小、最大、最小等)
(6) 统计思想和数据处理方法
(7) 极限思想和逼近方法
(8) 分类的思想方法
(9) 参数思想方法
还有观察、实验、归纳、利弊、分析、综合、抽象、概括等形成数学理论的方法,有一般的逻辑推理、证明方法、以及化归、递推、等价转换、推广与限定等常用的一般数学思想方法。
二、研究数学思想方法的目的和意义
数学思想方法是处理数学问题的指导思想和基本策略,是数学的灵魂。因此,引导学生理解和掌握以数学知识为载体的数学思想方法,是使学生提高思维水平,真正值得数学的价值,建立科学的数学观念,从而发展数学、运用数学的重要保证,也是现代教学思想与传统教学思想根本区别之一。在我们的数学教学和数学学习中,要再现数学的发现过程,揭示数学思维活动的一般规律和方法。只有从知识和思想方法两个层面上去教和学,使学生从整体上、从内部规律上掌握系统化的知识,以及蕴含于知识中以知识为载体的思想方法,才能形成良好的认知结构,才能有助于学生主动建构,才能提高学生洞察事物、寻求联系、解决问题的思维品质和各种能力,最终达到培养现代社会需要的创新型人才的目的。
三、如何贯彻数学思想方法的教学
数学思想是数学内容的进一步提炼和概括,是以数学内容为载体的对数学内容的一种本质认识,因此在数学课本中即使是直接指出某思想某方法,也不一定能起到应有的作用。于是,要使学生领悟、理解、掌握、运用数学思想方法,就需要通过精心的教学设计和课堂上的教学活动过程,沟通课本与学生的认识,在教师的主导、学生的参与下去完成。从原则上来说,数学思想方法的构建有三个阶段:潜意识阶段、明朗和形成阶段、深化阶段,一般可以考虑通过以下途径贯彻数学思想方法的教学。
1.充分挖掘教材中的数学思想方法
数学思想方法是隐性的本质的知识内容,因此教师必须深入钻研教材,充分挖掘有关数学思想方法。
2.有目的有意识的渗透、介绍和突出有关数学思想方法
在进行教学时,一般可从数学特征及中学数学内容分析的数学思想方法中考虑,应渗透、介绍或强调哪些数学思想,要求学生在什么层次上把握数学方法,是了解、是理解、是掌握、还是灵活运用。然后进行合理教学设计,从教学目标的确定,问题的提出,情境的创设,到教学方法的`选择,整个教学过程都要精心设计安排,做到有意识有目地进行数学思想方法教学。
3.有计划有步骤地渗透、介绍和突出有关思想方法
在知识形成阶段,可选用观察、实验、比较、分析、抽象、概括等抽象化、模型化的思想方法,字母代替数的思想方法,函数的思想方法,方程的思想方法,极限的思想
方法,统计的思想方法等等。
在知识结论推导阶段和解题教学中,可选用分类讨论、化归、等价转换、特殊化与一般化、归纳、类比等思想方法。
在知识的总结性阶段可采用公理化、结构化等思想方法.
总之,由于数学思想方法是基于数学知识又高于数学知识的一种隐性的数学知识,要在反复的体验和实践中才能使个体逐渐认识、理解,内化为个体认知结构中对数学学习和问题解决有着生长点和开放面的稳定成份。我们要从数学的特征和中学数学内容出发,充分体现“观察——实验——思考——猜想——证明”这一数学知识的再创造过程和理解过程,展现概念提出过程、结论的探索过程和解题的思考过程;从对数学具有归纳、演绎两个侧面的全面认识;从使个体掌握知识、形成能力和良好思维品质的全方位要求出发,去精心设计一个单元或一堂课的教学目标、问题提出、情境创设等教学过程的各个环节。
总之,数学教学是数学活动教学。因此,我们要在整个数学活动中展现数学思想方法,减少盲目性和随意性,并且贯彻以下几条原则;主动学习原则、最佳动机原则、可接受性原则、化隐为显的原则、螺旋上升的原则和数学思想方法的形式与内容相统一的原则